Физик Михаил Лукин: "Для ученого очень важно время от времени менять направление". Группа лукина в гарварде создала самый мощный в мире квантовый компьютер Первый квантовый компьютер в мире

МОСКВА, 14 июл — РИА Новости. Российские и американские ученые, работающие в Гарварде, создали и проверили первый в мире квантовый компьютер, состоящий из 51 кубита. Устройство пока является самой сложной вычислительной системой такого рода, заявил профессор Гарвардского университета, сооснователь Российского квантового центра (РКЦ) Михаил Лукин.

Физик сообщил об этом, выступая с докладом на Международной конференции по квантовым технологиям ICQT-2017, которая проводится под эгидой РКЦ в Москве. Это достижение позволило группе Лукина стать лидером в гонке по созданию полноценного квантового компьютера, которая неофициально проходит уже несколько лет между несколькими группами ведущих физиков мира.

Квантовые компьютеры представляют собой особые вычислительные устройства, чья мощность растет экспоненциальным образом благодаря использованию законов квантовой механики в их работе. Все подобные устройства состоят из кубитов — ячеек памяти и одновременно примитивных вычислительных модулей, способных хранить в себе спектр значений между нулем и единицей.

Сегодня существует два основных подхода к разработке подобных устройств — классический и адиабатический. Сторонники первого из них пытаются создать универсальный квантовый компьютер, кубиты в котором подчинялись бы тем правилам, по которым работают обычные цифровые устройства. Работа с подобным вычислительным устройством в идеале не будет сильно отличаться от того, как инженеры и программисты управляют обычными компьютерами. Адиабатический компьютер проще создать, но он ближе по принципам своей работы к аналоговым компьютерам начала XX века, а не к цифровым устройствам современности.

В прошлом году сразу несколько команд ученых и инженеров из США, Австралии и ряда европейских стран заявляли о том, что они близки к созданию подобной машины. Лидером в этой неформальной гонке считалась команда Джона Мартиниса из компании Google, разрабатывающая необычный "гибридный" вариант универсального квантового вычислителя, сочетающего в себе элементы аналогового и цифрового подхода к таким расчетам.

Лукин и его коллеги по РКЦ и Гарварду обошли группу Мартиниса, которая, как рассказал Мартинис РИА Новости, сейчас работает над созданием 22-кубитной вычислительной машины, используя не сверхпроводники, как ученые из Google, а экзотические "холодные атомы".

Как обнаружили российские и американские ученые, набор атомов, удерживаемых внутри специальных лазерных "клеток" и охлажденных до сверхнизких температур, можно использовать в качестве кубитов квантового компьютера, сохраняющих стабильность работы при достаточно широком наборе условий. Это позволило физикам создать пока самый большой квантовый вычислитель из 51 кубита.

Используя набор подобных кубитов, команда Лукина уже решила несколько физических задач, чрезвычайно сложных для моделирования при помощи "классических" суперкомпьютеров. К примеру, российские и американские ученые смогли просчитать то, как ведет себя большое облако частиц, связанных между собой, обнаружить ранее неизвестные эффекты, возникающие внутри него. Оказалось, что при затухании возбуждения в системе могут остаться и удерживаться фактически бесконечно некоторые типы колебаний, о чем раньше ученые не подозревали.

Для проверки результатов этих вычислений Лукину и его коллегам пришлось разработать специальный алгоритм, который позволил провести аналогичные расчеты в очень грубом виде на обычных компьютерах. Результаты в целом совпали, это подтвердило, что 51-кубитная система ученых из Гарварда работает на практике.

В ближайшее время ученые намерены продолжить эксперименты с квантовым компьютером. Лукин не исключает, что его команда попытается запустить на нем знаменитый квантовый алгоритм Шора, который позволяет взломать большинство существующих систем шифрования на базе алгоритма RSA. По словам Лукина, статья с первыми результатами работы квантового компьютера уже была принята к публикации в одном из рецензируемых научных журналов.

Внешний вид оптической ловушки, использовавшейся другим коллективом физиков

Institut für Experimentalphysik

Российско-американская группа физиков под руководством Михаила Лукина, сооснователя Российского квантового центра и профессора Гарвардского университета, создала программируемый 51-кубитный квантовый компьютер. Это самая сложная подобная система из существующих. Авторы проверили работоспособность компьютера моделированием сложной системы из множества частиц - это позволило физикам предсказать некоторые ранее неизвестные эффекты. Работа принята к публикации в одном из престижных научных журналов, доклад, посвященный разработке, был сделан на конференции ICQT, которая проходит в эти дни в Москве. Подробный разбор препринта работы можно прочитать в нашем .

Квантовые компьютеры оперируют особым типом битов - кубитами. В отличие от классических битов, эти логические элементы могут находиться одновременно в состоянии «ноль» и «единица», выдавая при измерении одно из них с известной вероятностью. Это позволяет разрабатывать принципиально новые алгоритмы вычислений, которые в некоторых случаях оказываются гораздо продуктивнее классических. К примеру, алгоритм Шора оказался экспоненциально быстрее классических алгоритмов разложения чисел на простые множители, а алгоритм Гровера позволяет быстрее находить корни булевых уравнений. Подробнее о квантовых компьютерах можно прочесть в «Квантовой азбуки».

Существует несколько платформ, на базе которых разрабатываются квантовые компьютеры. Основные - это сверхпроводящие квантовые кубиты и холодные атомы в оптических ловушках. Самой сложной программируемой универсальной системой до сегодняшнего дня был компьютер , разработанный IBM. Авторы новой работы улучшили результат в три раза, создав компьютер на холодных атомах, удерживаемых оптическими пинцетами. Как отмечает пресс-релиз, это полностью программируемый 51-кубитный квантовый компьютер.

Работоспособность системы ученые проверили парой экспериментов: вычислением поведения сложной системы, состоящей из большого числа связанных частиц с помощью квантового и классического компьютера. Авторы отмечают, что такие задачи чрезвычайно сложны и практически нерешаемы для традиционных систем. Результаты моделирования не только совпали, но и позволили предсказать неизвестный ранее эффект. Оказывается, при затухании возбуждения в системе могут остаться и удерживаться фактически бесконечно некоторые типы колебаний.

В будущем исследователи допускают реализацию на квантовом компьютере классического алгоритма Шора для разложения чисел на простые множители.

Интересно отметить, что многие коллективы называют 50 кубитов достаточной системой для демонстрации - квантового компьютера, решающего заведомо более сложные задачи, чем те, которые доступны классическим вычислителям. О планах достигнуть этой отметки к концу 2017 года заявляла группа ученых из Google под руководством Джона Мартиниса.

В неуниверсальных квантовых вычислителях можно встретить и большее количество кубитов. К примеру, системы для квантового отжига компании D-wave состоят из тысячи и более сверхпроводящих кубитов. Однако на них нельзя реализовать классические алгоритмы - например, алгоритм Шора. Они подходят лишь для определенного класса задач оптимизации. Тем не менее, на них уже , что квантовые системы могут превзойти современные компьютеры.

Владимир Королёв

Российские и американские ученые, работающие в Гарварде, создали и проверили первый в мире 51-кубитный квантовый компьютер — саму сложную вычислительную систему такого рода.

О этом заявил заявил профессор Гарвардского университета, сооснователь Российского квантового центра (РКЦ) Михаил Лукин, сообщают РИА Новости.

Физик рассказал об этом на Международной конференции по квантовым технологиям ICQT-2017 в Москве.

Это достижение позволило группе Лукина стать лидером в "гонке" по созданию полноценного квантового компьютера, которая неофициально проходит уже несколько лет между несколькими группами ведущих физиков мира.

Квантовые компьютеры представляют собой особые вычислительные устройства, чья мощность растет экспоненциальным образом благодаря использованию законов квантовой механики в их работе.

Все подобные устройства состоят из кубитов — ячеек памяти и одновременно примитивных вычислительных модулей, способных хранить в себе спектр значений между нулем и единицей.

Сегодня существует два основных подхода к разработке подобных устройств - классический и адиабатический.

Сторонники первого из них пытаются создать универсальный квантовый компьютер, кубиты в котором подчинялись бы тем правилам, по которым работают обычные цифровые устройства.

Работа с подобным вычислительным устройством в идеале не будет сильно отличаться от того, как инженеры и программисты управляют обычными компьютерами.

Адиабатический компьютер проще создать, но он ближе по принципам своей работы к аналоговым компьютерам начала 20 века, а не к цифровым устройствам современности.

В прошлом году сразу несколько команд ученых и инженеров из США, Австралии и ряда европейских стран заявляли о том, что они близки к созданию подобной машины.

Лидером в этой неформальной гонке считалась команда Джона Мартиниса из компании Google, разрабатывающая необычный "гибридный" вариант универсального квантового вычислителя, сочетающего в себе элементы аналогового и цифрового подхода к таким расчетам.

Лукин и его коллеги по РКЦ и Гарварду обошли группу Мартиниса, которая сейчас работает над созданием 22-кубитной вычислительной машины, используя не сверхпроводники, как ученые из Google, а экзотические "холодные атомы".

Как обнаружили российские и американские ученые, набор атомов, удерживаемых внутри специальных лазерных "клеток" и охлажденных до сверхнизких температур, можно использовать в качестве кубитов квантового компьютера, сохраняющих стабильность работы при достаточно широком наборе условий. Это позволило физикам создать пока самый большой квантовый вычислитель из 51 кубита.

Используя набор подобных кубитов, команда Лукина уже решила несколько физических задач, чрезвычайно сложных для моделирования при помощи "классических" суперкомпьютеров.

К примеру, российские и американские ученые смогли просчитать то, как ведет себя большое облако частиц, связанных между собой, обнаружить ранее неизвестные эффекты, возникающие внутри него. Оказалось, что при затухании возбуждения в системе могут остаться и удерживаться фактически бесконечно некоторые типы колебаний, о чем раньше ученые не подозревали.

Для проверки результатов этих вычислений Лукину и его коллегам пришлось разработать специальный алгоритм, который позволил провести аналогичные расчеты в очень грубом виде на обычных компьютерах. Результаты в целом совпали, это подтвердило, что 51-кубитная система ученых из Гарварда работает на практике.

В ближайшее время ученые намерены продолжить эксперименты с квантовым компьютером. Лукин не исключает, что его команда попытается запустить на нем знаменитый квантовый алгоритм Шора, который позволяет взломать большинство существующих систем шифрования на базе алгоритма RSA.

По словам Лукина, статья с первыми результатами работы квантового компьютера уже была принята к публикации в одном из рецензируемых научных журналов.

Затраты на реализацию проекта "Русское поле" частично покрываются за счет денежных средств, предоставленных фондом "Русский мир"

Михаил Лукин (род. 1971) — один из самых титулованных ученых современности. Американский и российский физик, член Американской академии наук, профессор Гарвардского университета, выпускник МФТИ, один из основателей Российского квантового центра. Михаил Лукин встретился с редакцией журнала «За науку» в Бостоне и поговорил о Гарвардском образовании, Ландавшице, алмазных кубитах, экспериментах, теории и даже о ремонте физтеховских общежитий в студенческие годы. Публикация Ксении Цветковой в журнале "За науку", 2018. №3.

В Гарварде я преподаю один курс в семестр. В основном это спецкурсы для аспирантов, сейчас — электродинамика. Здесь несколько уровней: вводный — на уровне книги Парселла, я же преподаю более продвинутый — что-то среднее между Сивухиным и Ландавшицем. Ландавшица здесь знают, но не особо используют. По моему мнению, это хорошая книга, но немного устаревшая. Например, все современные курсы с самого начала используют формализм векторов бра и кет для описания квантовых состояний. Первый квантовый том Ландавшица об этом не упоминает. Чтобы получить степень бакалавра по физике, нужно пройти всего несколько курсов: механика, электричество, термодинамика и волны. При этом есть много курсов высокого уровня. Tе, кто идет в аспирантуру, берут аспирантские курсы еще в бакалаврские годы. Здесь нет потолка, если есть интерес.

В Гарварде число предметов намного меньше, чем на Физтехе в 1-й год обучения, — там их было, наверное, десять. В Гарварде их четыре в семестр, но при этом они более интенсивные и в них часто включают проекты, выполняемые в лаборатории. Говорят, что Физтех смоделирован по образу MIT, но я в этом не уверен. Калифорнийский технологический институт (Caltech) больше похож на Физтех. Там все берут вначале одни и те же курсы. В 1998 году невозможно было даже мечтать о том, чтобы стать профессором в Гарварде. Здесь есть довольно необычные постдоковские стипендии — полная свобода, делай что хочешь. У тебя нет своей группы, однако ты можешь выбрать, с какой группой работать, а можешь работать сам. Стипендию непросто получить, но если удастся — считай, стал свободным художником. Я получил одну из них.

За три года на позиции постдока мы стали развивать интересные идеи, в частности, придумали эксперимент по остановке света. Этот процесс позволяет когерентно записать информацию о фотонном импульсе в атоме, а потом считать. Мы не только развили теорию, но и сделали эксперимент на ее основе, который получил широкую известность. По окончании трехлетнего срока в 2001 году мне предложили позицию assistant professor. Моя группа раз в несколько лет начинает разрабатывать новое направление. Из-за этого наша лаборатория довольно необычная, потому что мы не работаем в какой-то одной области. Для ученого очень важно время от времени менять направление. Это поддерживает научную молодость, заставляет думать, изучать новые вещи.

30 человек из моих выпускников уже стали профессорами, хотя обычно малая часть аспирантов остается в науке, в основном идут работать в крупные компании. В целом я считаю, что уход ученого в компании тоже делает мир лучше. В 2004 году мы начали использовать алмазные примеси как кубиты. Тогда у меня была толковая работящая аспирантка, которая занималась теорией. Мы стали думать, как построить твердотельные квантовые компьютеры или квантовые сети. В какой-то момент она пришла ко мне и сказала: «Никто не будет читать наши теоретические статьи, нужно сделать эксперимент». Тогда я только начинал, у нас была всего одна маленькая комната-лаборатория, и мой коллега одолжил нам место — уголок в его лаборатории три на три метра. Как потом оказалось, это был исторический, счастливый уголок, потому что в нем было совершено много важных открытий. Мы построили там два маленьких эксперимента. В течение пяти лет было восемь статей в Science и Nature — так началась алмазная кубитная деятельность.

Есть легендарная история. В одном из московских институтов был найден алмазный образец с уникальными свойствами для экспериментов: он был очень чистый. Его разделили на четыре кусочка: два достались нам, два — Штутгарту, где работала другая группа. Долгое время все эксперименты делались именно с этим алмазом. Сейчас, конечно, уже можно вырастить искусственные алмазы, которые по чистоте превосходят russian magic diamond — магический русский алмаз. Квантовый компьютер — это очень интересная, открытая тема, все об этом думают, компании инвестируют. Есть два очень интересных момента, о которых люди забывают. Мы пока не знаем, сможем ли мы построить настоящий большой квантовый компьютер в миллион кубитов. Более того, даже если мы его построим, никто пока точно не знает, для чего же он может пригодиться. Но мы уже начинаем создавать системы достаточно большие, когерентные и программируемые — уже ясно, что они позволят нам уникальным образом изучать динамику сложных систем. Я уверен, в ближайшие годы мы найдем много новых приложений.

Мои родители — ученые. Папа работает на Физтехе, а мама математик. Мой отец оканчивал Физтех, мой брат оканчивал Физтех. При этом мои родители считали, что заниматься в жизни можно чем угодно, но для начала нужно получить хорошее образование. По их определению, хорошее образование — либо физика, либо, в крайнем случае, математика. В детстве я хотел заниматься кино. Ходил в детские киностудии, что-то снимал, даже получал какие-то призы. Долгое время не занимался физикой специально, даже активно боролся с родителями, однако в какой-то момент стал задумываться, что делать дальше. Для кино нужно было поступать во ВГИК, а это казалось практически невозможным. В момент слабости родители уговорили меня попробовать порешать задачки, и мне очень понравилось. В последний год школы я занимался у Виктора Ивановича Чивилева с кафедры общей физики. Это просто изумительный человек и преподаватель. Сейчас он тренирует олимпиадные команды, преподает очень интересно, интуитивно. Виктор Иванович привил мне интерес к решению задач, за последний год школы я подготовился к вступительным экзаменам. Когда я поступал на Физтех, решать задачи мне нравилось, но все равно не был уверен: наука — это мое или нет? На ФОПФ шли все, кто хотел заниматься наукой. Поэтому я решил, что кванты — это что-то более прикладное. Так я и оказался на ФФКЭ.

Была интересная история: мы после второго курса летом ремонтировали наше общежитие, «двойку». Говорят, что его построили немецкие военнопленные в конце 40-х — начале 50-х, с тех пор оно потихонечку рушилось, его пытались привести в порядок, но ничего хорошего не выходило. Мы вместе с Фёдором Золотарёвым и Сашей Парбуковым взялись и отремонтировали его по государственным расценкам, но при этом используя поступающих ребят. После этого один из «зачинщиков» ремонта Фёдор Золотарёв создал свою строительную компанию. Говорят, у него много известных физтехов потом работало. Что пожелать физтехам? Развиваться, найти себя, не следовать за толпой. Всегда искать новые решения и не бояться сложных задач. Тогда все будет хорошо.

Российские ученые представили разработку, которая, по их словам, должна кардинально изменить жизнь человечества. Созданием квантовых компьютеров, способных работать в миллионы раз быстрее современных операционных систем, занимаются крупнейшие технологические корпорации мира. Но они уже признали победу коллег.

Это казалось фантастикой еще вчера - квантовые компьютеры, способные обогнать все существующие устройства. Они настолько мощные, что могут или открыть человечеству новые горизонты, или обрушить все системы безопасности, потому что смогут взломать их.

«Квантовый компьютер функционирующий, он гораздо страшнее атомный бомбы», - считает генеральный директор компании Acronis, сооснователь Российского квантового центра Сергей Белоусов.

В разработку вкладываются крупнейшие корпорации: Google, IBM, Microsoft, Alibaba. Но сегодня в центре внимания - Михаил Лукин, физик из Гарварда и один из основателей Российского квантового центра. Его команде удалось создать самый мощный на данный момент квантовый компьютер.

«Это одна из самых больших квантовых систем, которые были созданы. Мы входим в тот режим, где уже классические компьютеры не могут справится с вычислениями. Делаем маленькие открытия уже, увидели новые эффекты, которые не ожидались теоретически, которые мы сейчас можем, мы пытаемся понять, мы даже до конца их не понимаем», - рассказывает профессор Гарвардского университета, сооснователь Российского квантового центра Михаил Лукин.

Все - из-за мощности таких устройств. Расчеты, которые на сегодняшнем суперкомпьютере займут тысячи лет, квантовый может сделать в один миг.

Как это работает? В обычных компьютерах информация и вычисления - это биты. Каждый бит - либо ноль, либо единица. Но квантовые компьютеры основаны на кубитах, а они могут находиться в состоянии суперпозиции, когда каждый кубит - одновременно и ноль, и единица. И если для какого-нибудь расчета обычным компьютерам нужно, грубо говоря, выстроить последовательности, то квантовые вычисления происходят параллельно, в одно мгновение. В компьютере Михаила Лукина таких кубитов - 51.

«Во-первых, он сделал систему, в которой больше всего кубитов. На всякий случай. На данный момент, я думаю, это больше чем в два раза больше кубитов, чем у кого-либо другого. И он специально сделал 51 кубит, а не 49, потому что Google все время говорил, что сделает 49», - объясняет гендиректор компании Acronis, сооснователь Российского квантового центра Сергей Белоусов.

Создание самого мощного квантового компьютера пророчили ему. Джон Мартинес - руководитель крупнейшей в мире квантовой лаборатории корпорации Google. И свой 49-кубитный компьютер он планировал закончить только через несколько месяцев.

«22 кубита - это максимум, что мы смогли сделать, мы использовали все свое волшебство и профессионализм», - рассказывает он.

Мартинес и Лукин выступили на одной сцене - в Москве, на Четвертой международной квантовой конференции. Впрочем, соперниками ученые себя не считают.

«Неправильно думать об этом, как о гонке. Настоящая гонка у нас с природой. Потому что это действительно сложно - создать квантовый компьютер. И это просто захватывающе, что кому-то удалось создать систему с таким большим количеством кубитов», - говорит глава лаборатории «Квантовый искусственный интеллект» компании Google Джон Мартинес.

Но для чего нам понадобятся квантовые компьютеры? Даже сами их создатели не знают наверняка. С их помощью могут быть разработаны совершенно новые материалы, сотни открытий в физике и химии. Квантовые компьютеры - пожалуй, единственное, что может приоткрыть тайну человеческого мозга и искусственного интеллекта.

«Когда совершается научное открытие, его создатели не представляют всю мощь, которую оно принесет. Когда придуман был транзистор, то никто не представлял, что на этом транзисторе построятся компьютеры», - говорит директор Российского квантового центра Руслан Юнусов.

Один из первых компьютеров был создан в 40-х годах ХХ века и весил 27 тонн. Если сравнить с современными устройствами, то обычный смартфон по мощности - это как 20 000 таких машин. И это за 70 лет прогресса. Но если наступит эра квантовых компьютеров, уже наши потомки будут удивляться, как вообще пользоваться этим антиквариатом.

 
Статьи по теме:
Учебник CSS для начинающих
Здравствуйте, уважаемые читатели блога сайт. Сегодня я хочу продолжить тему изучения и рассмотреть те стилевые правила, которые позволяют задать отступы и границы для Html элементов: border, margin и padding.До этого мы успели изучить довольно-таки просты
Бесплатные программы для Windows скачать бесплатно
Вы установили Service Pack 1 на Windows 7? Он уже доступен всем! Есть вопросы? Где скачать, как подготовиться, как интегрировать в дистрибутив… Ответы на них вы найдете в этой статье, которая будет дополняться по мере появления новых вопросов и ответов. П
Проверяем работоспособность жесткого диска на ошибки и бэды
Мы расскажем один простой и второй, более продвинутый, способ проверить состояние вашего жесткого диска и исправить поврежденные сектора с помощью программы HDDScan и программы HDD Regenerator.Жесткий диск имеет свой ресурс, поэтому желательно раз в год п
Powershell: использование командлета Invoke-Command
На сегодняшний день PowerShell Remoting является основным инструментом удаленного управления операционными системами Windows. Поэтому, знать о его возможностях и использовать в своих повседневных задачах должен каждый системный администратор Windows. Для